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Abstract—Within this work, an analytical approach for robust
recognition of four different head gestures in a continuous
data stream is presented. Analytical solutions are more robust
against signal variations than pure signal-oriented approaches.
Furthermore, they enable user-independent gesture recognition.

The proposed model integrates information about sensor
placement and ideal shape of gestures. Furthermore, activity-
based windowing was used to increase computational efficiency.
Model parameter values were obtained empirically. For evalua-
tion, data were collected from ten subjects using a 9-axis MEMS
motion sensor system. The subjects were instructed to repeat each
of the defined gestures five times. In addition a total number of
25 motion patterns slightly different to the defined gestures were
recorded for each subject. Applying user-specific parameters an
average classification rate of 93.56% + 4.96% was achieved.
User independent parameters led to an average classification rate
of 87.56% =+ 8.90%. It is likely that the performance using user
independent parameters can be further increased when giving the
user meaningful feedback about how to adjust their movements.
However, future research will cover real-time performance of the
model in a natural environment.

I. INTRODUCTION
A. Previous Work

People with tetraplegia cannot move any of their limbs
and are therefore limited in their capabilities of interacting
with their environment. Nevertheless, many of them can still
move their heads which can be utilized for the development
of assistive devices. In [1] we already presented and tested
a control structure for direct control of a robotic arm with
head motion. Head motions were recorded using a 9-axis
Inertial Measurement Unit (IMU) including on-board sensor
fusion. Head orientation in terms of Euler angles was used to
generate three independent signals to control a robot arm. It
was proposed to control the 3D position of the robot gripper
in world coordinates and the gripper 3D orientation in device
coordinates. Moreover, an additional signal was necessary to
open and close the gripper. As a result, at least 7 degrees of
freedom (DOFs) had to be controlled while head movements
provided 3 DOFs only. To map the 3 DOFs of the head onto the
7 DOFs of the robot, the robot movements were decomposed
into motion groups with maximum 3 DOFs. For switching
between the motion groups additional control commands were
needed.

The generation and reliable recognition of these so called
switching commands is proposed within this work. Switching
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is performed by a well-defined head movement that can be
recognized with high reliability and low latency. Furthermore,
interference with the head motions which are used for direct
control of the robot arm has to be avoided.

B. Related Work

The presented research problem belongs to the field of
pattern recognition, more precisely, Human Activity Recog-
nition (HAR). Until now, most research in this topic addresses
computer vision-based approaches as surveyed in [2]. A major
drawback of vision-based approaches is that they require at
least one camera that faces and captures the user. As a conse-
quence, they can only be used in constrained environments.
In addition, many people do not want to be filmed which
generally decreases user acceptance of vision-based systems.

In contrast, motion sensors are self-contained. That means,
they do not require any modification of the environment in
order to record motion. Moreover, motion sensors based on
MEMS! technology are small, low-cost and energy-efficient.
Hence, approaches using body-worn motion sensors have
attracted grown interest in HAR research of recent years. In
[3] the authors give an extensive introduction into this topic.

A general purpose framework for designing Activity
Recognition Chains (ARC) consists of the following elements:

1)  Preprocessing (optional): Filters are applied to re-
move artifacts from raw sensor signals.

2)  Windowing: A continuous data-stream is split into
segments which contain data for further analysis.

3)  Feature Calculation: Reduces the signal into features
which may be discriminative for the classification
problem.

4)  Dimensionality Reduction (optional): Features of in-
terest are selected or the feature set is projected onto
a lower dimensional subspace.

5)  Classification: A classifier assigns each data segment
to a certain class based on its features.

There are mainly two distinct approaches to address pattern
recognition problems, i.e, signal-oriented [4], [5] and analytical
ones [6]. Whenever the relationship between input data and
output is unknown or too complex to implement, the signal-
oriented approach is a good choice. An example application
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is handwriting recognition using wearable sensors [7]. In this
case the input data corresponds to the sensor data while the
output corresponds to the performed gesture. Signal-oriented
ARCs to address this type of problem are based on statisti-
cal signal properties, e.g., mean and variance, and statistical
models. Common statistical models for classification are k-
Nearest-Neighbor, Support Vector Machines, Artificial Neural
Networks and Hidden Markov Models [8]. A major advantage
of ARCs based on the signal-oriented approach is that they
can be adapted to any pattern recognition problem. Further-
more, implementations of statistical models are often already
provided as part of Integrated Development Environments or
freely available online.

In contrast, analytical approaches consider prior knowledge
in order to develop customized ARCs. Therefore, they are often
not pursued even though they are more robust against signal
variation [9]. Within this work, we present a new analytically
derived algorithm to recognize head gestures. The algorithm
is adapted to the boundary conditions of the research problem
discussed in section I-A. That means, the proposed method
considers kinematic knowledge about the system, such as
sensor placement and ideal shape of the gestures. Furthermore,
specifications were made for the consistent integration into the
already existing control structure to meet the computational
requirements for real-time gesture recognition.

II. ANALYTICAL HEAD GESTURE RECOGNITION
A. Sensor Placement

A 9-axis IMU is used to measure the user’s head motion.
Outputs are the raw sensor data from three accelerometers,
three gyroscopes and three magnetometers, as well as sensor
orientation obtained from these raw data. The 9-axis IMU
sensor is placed on the user’s head [10]. We have shown
that the sensor is moved on a spherical surface when the
sensor yaw axis coincides with the approximated yaw axis
of the user’s cervical spine. Given this sensor placement,
changes in head and sensor orientation are identical and a
transformation of sensor orientation to head orientation is not
needed. Nonetheless, an offset calibration remains a necessary
preprocessing step. Furthermore, the challenge is to avoid
inaccurate sensor placement, to reduce sensor drift as well as
coupled motion due to the complex kinematic of the cervical
spine. However, these deviations are expected to be small.
Fig. 1 shows the sensor placement and the coordinate systems.
At this point, one should note that every head motion apart
from rotation around the yaw-axis results in additional linear
sensor movement as the sensor is not rotated around its own
center.

B. Head Gesture and Feature Selection

The previously mentioned linear sensor movement provides
important information for head gesture recognition. Given the
presented sensor placement, the onset of pitch or roll motion
of the head results in noticeable linear sensor acceleration.
Moreover, during pure pitch or roll motion the other DOFs,
which we call non-dominating DOFs, are expected to be
activated to a small extent only, e.g., due to coupled motion
or imperfect sensor placement [10]. Using this fact, we define
four gestures which can be discriminated easily (Fig. 2):
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Fig. 1. Coordinate systems of the head (purple, seen from the back of the
head) and of the sensor (green). Both head and sensor coordinate system have
three rotational degrees of freedom (DOFs), i.e., roll ¢, pitch ¢ and yaw .
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e  Nodding down: Motion along the pitch DOF, 4, start-
ing from the center in negative direction and back

e  Nodding up: Motion along the pitch DOF, ¥, starting
from the center in positive direction and back

e  Bending left: Motion along the roll DOF, ¢, starting
from the center in negative direction and back

e  Bending right: Motion along the roll DOF, ¢, starting
from the center in positive direction and back

When displaying head displacement d against time ¢, the
shape of the dominating DOF of each of these gestures can be
approximated well by a Gaussian function that is given by

d=d,.. e (52) (1)

Maximum head displacement is expressed by the amplitude
dmazs te 18 the centroid, and w is related to the peak width.
Peak width can be influenced by the time the user needs to
perform the gesture. The parameters are gesture- and user-
dependent. Amplitude and time for gesture execution are
important parameters to describe the gesture while the centroid
is of minor importance for time series data. The goodness of
fit can be expressed by means of the R?-value. Correct gesture
execution leads to high R2-values. Overall, this leads to five
important features to describe each gesture:

e Amplitude d,,q, of the dominating DOF

e  Peak width w of the dominating DOF

e  RZ.value of the fit

e Relative coupling A; of the first non-dominating DOF

e Relative coupling As of the second non-dominating
DOF

The relative coupling is defined as the range of a non-
dominating DOF normalized by the amplitude d,,,, of the
dominating DOF. Common values of these features can be
obtained empirically as described in section III-B.

C. Windowing

We assume that activity is present if the magnitude of
linear acceleration of the sensor is greater than a previously
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Fig. 2. The four gestures to be classified, and their shapes of the dominating DOF when plotting head displacement against time.

defined threshold £, = 0.5mms~2. For every sample with
index i a decision whether there is activity (a,(t = i) = 1)
or not (ap(t = i) = 0) is made. In order to compensate for
unwanted spikes, a lowpass filter has to be applied to this
binary signal. Simple moving average (SMA), linear weighted
moving average (LWMA) and quadratic weighted moving
average (QWMA) have been considered due to their low
latency in real-time applications. The spike removal is best
using SMA, but it also leads to the highest latency. QWMA has
the lowest latency but performs worst at smoothing. However,
QWMA was still found to be the best compromise because the
information content was highest for the resulting windows. A
QWMA of order n can be written as

1~ ,
agwma(t) = BZzz-ab(t—n—&—z) )
i=1
with 3 = 42
j=1

For the experiments, the order was chosen to be n = 20.
In conclusion, windowing starts when the smoothed activity
signal agwama(t) exceeds a certain threshold €,, = 0.4 and
ends when it falls below. All mentioned parameter values have
been obtained empirically. Fig. 3(a) illustrates the real-time
windowing procedure.

D. Analytically Derived Classification Algorithm

For every window it is checked whether one direction of
movement is dominating at the beginning. If so, the direction is
identified. A direction is considered dominating if its amplitude
of linear acceleration a; normalized by the softmax function
exceeds a threshold €, = 90%. The softmax function for DOF

j € {p, 9,9} is given by

e)"aj (t) .
p;(t) = T oa® with k£ = ¢, 9,9 (3)
Where A = 25 is the scaling factor. Based on the result,

a preselection is made. This can be done before the entire
window is recorded. At this stage, the four gestures which
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TABLE 1. USER INDEPENDENT CLASSIFICATION THRESHOLDS
Description Parameter Value
Minimum amplitude dimax 25°
Maximum peak width €p 0.28s
Minimum R-squared value €R 85 %
Max. relative coupling of 1% non-dominating DOF €Aq 80 %
Max. relative coupling of 2" non-dominating DOF €Ay 80 %

are used as control commands are already clearly separated.
This is due to the fact that the direction of the initial linear
acceleration is unique for each gesture.

However, the major challenge is to separate these gestures
from unintended motion as well as from motion for control of
the robot arm. For this reason, in the next step it is checked
whether the window data fulfills the definition of the eligible
gesture or not>. Due to the preselection, the dominating DOF
as well as the direction of motion are known. That means, only
relevant features need to be computed. As a result, preselection
reduces the feature space so that no additional dimension-
ality reduction, known from common pattern recognition, is
required.

In order to determine amplitude and peak width, a Gaussian
function (Eq. 1) is fitted to the head angle data of the
dominating DOF. This is done using the Levenberg-Marquardt
algorithm3. After a successful fit, the R2-value is calculated.
In addition, the relative coupling of the non-dominating DOFs
is computed. If the amplitude d,,,, is greater than a certain
threshold g4, ., the peak width w below e, the RZ-value
greater than € i and the relative coupling of the non-dominating
DOFs A » below the thresholds € A, > the gesture is classified
(Fig. 3(b)). That means, simple thresholds are used to separate
the gestures from every other motion that might occur. For
the presented experiments, the thresholds for the classification
(Table I) have been obtained empirically as described in
section III-B.

2For computational efficiency this only needs to be done if the window
length is in the range of the gesture length.

3The starting point for the optimization is chosen to be identical with the
expectation values, which may be obtained empirically. Assuming a gesture
is present, the starting point is already close to the optimum, which speeds
up computation and minimizes the risk of running into a local minimum.
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(a) Activity-based windowing using smoothed accelerometer data.

Fig. 3.

E. Integration of Gesture-Based Switching into the Robot
Control Structure

As described in [1] during direct control of the robot, a
sigmoidal transfer function is used between head displacement
and robot velocity. That means, small head movements below
a certain threshold do not result in physical robot motion.
This zone is called dead zone and can be used for consistent
integration of switching commands into the robot control
structure.

The key idea is that a head gesture used for switching must
clearly differ from robot control signals within the dead zone.
In general, slow and smooth motion is used for robot control.
As a consequence, the linear sensor acceleration always stays
below a certain threshold during robot control. If the magnitude
of linear sensor acceleration exceeds this threshold within the
dead zone, head gesture recognition is initiated (Fig. 4). From
then on, no robot control is possible until the magnitude of
sensor acceleration falls below the acceleration threshold and
the user’s head returns to the dead zone.
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End

(b) Feature calculation and classification after a window
has been recorded. The feature space is reduced by
calculating only features which are relevant for the
expected gesture.

Flow chart of the real-time implementation of the proposed analytical gesture recognition algorithm.

If linear sensor acceleration is above the previously defined
threshold while head displacement is beyond the dead zone, the
head motion is assumed to be unintended and neither converted
into robot motion nor into a switching command.

III. METHODS

The following measurements were carried out using an
FSM-9 by Hillcrest [11], which was mounted on a hairband.
The sampling rate was set to fs =125 Hz.

A. Subjects

10 able-bodied subjects were recruited from the University
of Bremen to take part in the experiment. Three of them were
females and the remaining seven males. Their ages ranged
from 27 to 48. None of the subjects suffered from known neck
motion limitations.

Able-bodied subjects were used because the availability of
tetraplegics is low due to the low prevalence of tetraplegia.
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TABLE II. MOVEMENTS WHICH ARE CANDIDATES FOR MISCLASSIFICATION (DISTURBANCES)
No.  Disturbance Directions Trials
1 Turn head slowly in one of the directions and back (4+¢,0,0), (—,0,0), (0,+9,0), 4
(0,—9,0)
2 Turn head quickly in one of the directions and slowly back (+¢,0,0), (—¢,0,0), (0,+9,0), 4
(0, —9,0)
3 Turn head slowly in one of the directions and quickly back (+¢,0,0), (—¢,0,0), (0,+9,0), 4
(0,—9,0)
4 Turn head quickly in one of the directions, then in opposite direction and back (4, 0,0), (—¢,0,0), (0,+9,0), 4
to resting position (0,—9,0)
5 Turn head quickly in one of the diagonal directions and back (¢, +9, +), (=, +9, =), 4
(=, =0, =), (+¢, =0, +1)
6 Turn head quickly in one of the directions and back

7 Do not move head

(0,0, 41), (0,0, —¢) 2

A
© <—— Dead Zone
S 3 ]
LS
= © ]
@ Enable Gesture ' No Control
S Recognition b=}
< | 2
5 & Eee e g
S No Control/ =
b Enable Robot Robot Control
§ Control
5 } } =
Xpz Xmax X

Head Displacement

Fig. 4. Gesture recognition mode is entered when the threshold ar
is exceeded within the dead zone. Gesture recognition stops when linear
acceleration falls below a7. Robot control mode is enabled whenever the
user’s head is inside the dead zone while linear acceleration is below ap. If
he then slowly leaves the dead zone, robot control is carried out.

Furthermore, in this stage of development able-bodied subjects
were considered sufficient to provide a proof-of-concept of the
proposed algorithm.

B. Model Parameter Adjustment

In order to adjust the model parameters, the subjects
repeated each of the four gestures (Fig. 2) for 5 times, resulting
in 20 trials. They were instructed to perform the gestures
”quick” without any further description. The resulting data can
be regarded as training data as used for supervised learning
algorithms. However, signal-oriented models using supervised
algorithms usually have to be re-trained occasionally due to
signal variation. In contrast, the proposed model is designed
in a way that re-training is not necessary. Within this work,
we investigate whether the parameters have to be adjusted once
per user or once in total.

As a consequence, the parameters were set both user
specifically and user independently with data from all the
subjects. The thresholds were chosen in a way that all training
data with the exception of outliers were included. Outliers were
detected by personal inspection of the data. Personal inspection
was chosen because the human brain is able to classify data
very reliably even though the database is small. Moreover,
automation is not required when re-training is not needed. For
both user specific and user independent thresholds the mean
values of d,,., and w of each gesture have been used as
starting points for curve fitting.

The user independent thresholds are shown in Table I.
Choosing appropriate thresholds for relative coupling turned
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out to be difficult because sometimes coupling was high
although from optical inspection of the subjects during the
experiments the subjects moved their heads in only one di-
rection while sensor and neck yaw axes seemed to coincide.
However, further investigation on coupled motion is ongoing.

C. Testing Data

For testing, the subjects repeated each of the four gestures
(Fig. 2) for another 5 times. They were instructed to move
the same way like during parameter adjustment. They did
not know which parameter values were used for the model.
Furthermore, the subjects were instructed to perform 25 pre-
defined non-gestures (disturbances), as described in Table II.
These disturbances are typical candidates for misclassification
because they are very similar to the gestures and therefore quite
hard to separate from them. In total, the test set contained five
repetitions for each of the four gestures and in addition 25
disturbances.

IV. RESULTS AND DISCUSSION

User specific thresholds led to an average classification rate
of 93.56% + 4.96%. At this point, one should acknowledge
that no confusion between gestures was encountered. The
misclassifications resulted either from gestures which were
not detected at all (False Negatives) or from disturbances
which were too similar to the definition of a certain gesture
(False Positives). This is true for disturbances 1-3. The total
misclassification rates of disturbances 1 and 3 were both 5%.
Disturbance 2 was misclassified in 42.5% of all cases. If
this disturbance turns out to be relevant for real-time control,
skewness may be added to the feature space in order to avoid
misclassification. Disturbances 4-7 were not misclassified at
all. Gestures 1-3 were not detected although they were present
in 4% of all cases. Gesture 4 was not detected in 8% of all
cases. In general, gestures were not detected whenever they
were not performed as defined. As a result, this kind of error
could be reduced by expanding the gesture definitions but
for the price of a higher misclassification rate. However, the
chosen thresholds are considered a reasonable tradeoff. In this
context, one has to mention that this tradeoff mainly arises
due to the fact that the user just did not always perform the
gestures as instructed.

The average classification rate using user independent
thresholds was 87.56% =+ 8.90%. Fig. 5 contrasts the results
using user specific and user independent thresholds for all
the subjects. User independent thresholds led to slightly lower
classification rates than user specific ones, but it is likely that
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users are able to adapt their movements to the gesture defini-
tions if they do not suffer from neck movement limitations.

V. CONCLUSION

With the proposed analytical approach, head gestures are
identified in a robust way with high accuracy. Therefore, the
analytical approach is recommended to be used for detecting
switching commands. Misclassifications of different gestures
are not present. Such a good class separability can hardly
be achieved when using purely signal-oriented ARCs with a
comparable amount of data. This hypothesis has been verified
during preliminary tests in which standard ARCs using for
example k-Nearest Neighbor or Support Vector Machines have
been evaluated.

False Positives were classified when a disturbance was too
similar to the definition of one of the gestures. As a conse-
quence, misclassification rate can be reduced by narrowing
the gesture definitions. For this purpose, users need to learn to
perform the gestures with higher reproducibility. As the used
five features and the corresponding classification thresholds
are interpretable from a physical point of view, they can be
used for feedback in order to advise users how to adjust
their movements for optimal classification. The possibility
of giving meaningful feedback is a major advantage of the
analytical approach. Using signal-oriented pattern recognition,
the relationship between input signals and classification result
is much harder to interpret. As a result, the user can hardly
adjust his behavior in a way that classification performance is
improved. This is not only true for user specific but also for
user independent ARCs.

In contrast, with the presented analytical approach, user-
learning will probably lead to a lower inter-subject variability.
It is therefore likely that using the same thresholds for all
users will not decrease performance significantly. However,
future research is directed towards implementing the proposed
classification algorithm into the control structure in order to
investigate its performance in a real-life scenario.
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Classification rates for all the subjects using user-dependent and global thresholds. Global thresholds were obtained with data from all the subjects.
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